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INTRODUCTION

This semi-annual report reviews the results obtained since
1 July 1966 under the research grant NsG-172-60, GALCIT 120. Work
under this grant has been concerned with several problems relating to

fracture in viscoelastic materials which are listed in the order in which

they will be discussed below.

1 Material Characterization
a) linear viscoelastic rr.aterials
b) non-linear viscoelastic response

c) non-linear response in the swollen state

I1 Stress Analysis of Crack Geometries Under Large Deformations
a) experimental evaluation
b) incremental solution for a linearly elastic naterial
c) incremental computer solution for @ non-linearly

elastic material

II1I Comparison of Theory and Experiment for Failure Under

Uniaxial Cyclic Strain

IV Crack Propagation in a Strip
a) theoretical work

b) experimental determimtion

Iterns I and II are necessary prerequisites to a refined tailure analysis such
as embodied in items II1I and IV, The latter two areas of investigation
develop methods to better understand the failure process under varying

stress or strain histories in viscoelastic materizls,



I MATERIAL CHARACTERIZATICN

The linear behavior of viscoelastic materials is well understood
on a phenomenological basis. In using the viscoelastic n-aterial functions
for calculations in stress analysis it is often necessary to know, inter-
changeably, the relaxation modulus, the creep compliance and the complex
modulus and compliance. The latter two forms are necessary when
dealing with cyclic load histories such as in the failure growth under
cyclic strain.

a) Linear Viscoelastic iviaterials. Although failure is usually

associated with large deformations, it has been found repeatedly that
{modified) linear viscoelastic analysis has provided quantitative answers
to fracture probler\ns. In order to minimize the amount of experimental
work in determining the various material properties, it is desirable to
interconvert one material function into the other. Approximate nethods
to do this have been available for some time.

Cne particularly attractive way is the use of prony series
representation. However, simple collocation techniques are not
satisfactory for many applications and a more accurate method for
determining the prony coefficients is needed. TIhis can be achieved if
the relaxation spectrum is known. Since from the polymer science point
of view characterization of a material by the relaxation spectrum is much
more informative than say the relaxation modulus, an investigation was
therefore started some time ago to calculate numerically the relaxation
spectrum and to compile a set of cormputer programs which would
automatically calculate the relevant material function from one function
(say relaxation or dynamic modulus) by way of the relaxation spectrum.
This investigation is now in the final stage. The key findings are that the

numerical solution of the integral equation




for II{7) is not a straizhtforward rratter which can be achieved economically
with great accuracy. In order to deteririne the accuracy of the procedure,

a special function [I{T) was chosen as the modified power law
p

] (2)

E (o) - E
H(T) = rel R exp [—

from which the relaxation modulus is determrined as

A

E (o) - E
IZrel = ER ¥ rel ; s ) (3)
(1 +1t)<
Using this expression for F:rel as input to the numerical program one can
now calculate from (1) H(T) and compare it with (2}). In order to compare

some standard approximate metiods with the numerical scheme, two
approximations of the Widder-i~ost type are shown in figure 1 through 3.
Each figure shows the limitation of the separate methods from a different
viewpoint. The numerical method gives results which oscillate about the
exact one while the approximate methods deviate consistently from the
exact solution, though less than the maximum variations of the digital
computer calculations. It is important to note, however, that on the
basis of figure 3 the average error of the numerical scheme is approxi-
mately zero whereas the Widder-Post results lead to a net non-zero error,
In applying the same technique to the determination of the
retardation spectrum L(t) certain difficulties arose. The creep compliance

is given by

®© -t/
D =D (o) +f L{T) 1 -¢ ] dr
creep creep =

o)
* d » /
=Dcreep(0) +fo L(T) —;T- - fL{T) e-t"-r i‘r: (4)
o
0
t/T dr
= creep( ) -f ) T



The form

D (00) - D (1) = f
creep crecp
o

is of the type of equation (1). Therefore, the same numerical computer
programn was applied to this equation. The results for 1(r) were
inexplicably unreasonable in the sense that [ (7) was not a monotonic
function as it should be. Because the computer program worked well

for equation (1) the unreasonable behavior of tihe retardation spectrums
is likely to be the result of the pecularities of the integral equation (about
the numerical solution of wiaich little is known) and the sensitivity of the

rr

+ .
iy = LIT) L Itis

solution to the type of function to be deiern ined T}
evident from figures 1 through 3 that the approximrate nmethods of the
Widder~-Post type give resu’ts which are generally as good as or better
than the numerical calculations. It should be borne in mind, however, that
this is at least in part due to the fact that the relaxation modulus is known
as an analytic function. In a practical case that function would be xnown
only as numerical data and the determination of the relaxation spectrum
would involve determining first and second derivatives graphically which
is not an accurate process. It appears, therefore, that the numerical
method would, in general, yield quite acceptable results which can be

used to convert relaxation data into creep and dynamic viscoelastic
properties.

b) Non-linear viscoelastic response. Cver the past year some

effort has been directed to exan'ining the viscoelastic behavior of
Solithane 113 under large strains. Attemnpts to fit experimental data into
existing theories have not been successful to date. One primary reason
is that the data does not seemr to {ollow a simrple pattern. TFigure 4

illustrates this deficiency most clearly; it gives the results of relaxation

The essential difference between 1I{7) and ".{7) is that H(7) rises fast with
T and decreases slowly with T after the maxinum is reached, while £(T)
rises slowly with T and drops to zero fast after the maximum.
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tests in which the strain was increased in steps at the given temperature
and then held constant. Although a new ring speciinen was used at each
temperature, the behavior at 60 per cent strain soon deviates {romn: that
at other strains as the teirperature is lowered and as the terrperature
approaches the glass trangition temperature this anomalous behavior
shifts to higher strains (-17. 5°C) and vanishes again as the glass
transition is passed.

c) Non-linear Response in the Swollen State. The swelling of

rubberlike materials has been used in order to quickly obtain an
equilibrium position in the case of stress-strain mreasurements. Part
of the internal viscosity of the material is ta<en out by swelling it in a
suitable agent. Swelling also affects the constant CZ in the standard
Manney=Rivlin stress=-strain law, it reduces F’Z and tends to mrake the
material more Neo-Hookean.

In order to reduce the complexity of a study of the fracture process
in Solithane by decreasing the internal viscosity, the material characteriza-
tion in the swollensate was undertaicen as a first step in this direction,

The solubility parameter # of Solithane 50/50 in a poorly hydrogen
bonded solvent was experimrentally determined to be *=9.6 Fal/cm .

This result led to the selection of Tolucne (£ = 8. 9) as a swelling agent.
Toluene swelling increases the volume of Solithane by 1454. i.e. the
linear increase is 35¢. Rough checks of the sol-fraction ir Solithane 50/50
showed it to be less than 1 weight per cent.

Stress-strain tests were now performed at different strain rates
and termmperatures with the tensile specimen completely submerged in Toluene
during the full length of the test. A tank-type apparatus, which can be
inserted into the Instron testing machine, was especially designed for
that purpose. The specimens had a dogbone shape.

The tests were run at strain-rates ranging from 0. 00725 in.An.min.
to, 7. 25 in.in.rmin, and temperatures ranging from 5°C to 40°C. Very good
agreement oi the stress-strain data with the behavior predicted by the
classical theory of rubber elasticity was [ound at all rates and temperatures.
The experimrental error was in the order of <34, Figures 5, 6, and 7

show the data in form of Mooney-Rivlin plots ior several strain rates and

-5-



temperatures. Note that the stress chanves with terperature in the manner

predicted by classical rubber elasticity theory, i.e., thc stress is propor-
. . - . . - ~ S . .
tional to I'. These results yield the constant C, = C. /T in the equation
2 1 1
-— e - - - ol .0, .
T= Z‘vl I [e=-0c "1Ttobe C,=0,525 psi, &, where stress and extension

ratios are based on the dimensions of the swollen unstretched sample.
Using this constant, which corresponds to a Youngs modulus of E = 165 psi
for small extension ratios at room temperature, the effective number
of chains was calculated to be 5. 89x10'4 moles/ml. This corresponds to

a sol-fraction of 0.6 weight ner cent and a tensile nw odulus of ~ 500 psi

t

according to the measuren ents of .. Smith and A. i, }fagnusson.

Assuming the sol-fraction to be zero, the polymer solvent
interaction parameter i was calculated {rom the equation givean by Bueche
and Dudek4+_. it tarned nut tohe = 0, 492,

In conclusion it can be said that the Solithane 50/50-volumre
composition swollen in Toluene yields a n aterial behavior which conforms
very well with the results given by the classical theory of rubber elasticity
and has largely reduced internal viscosity as far as the stress-strzin
behavior is concerned. [I'his material behavior should facilitate a study of
the fracture process which is expected to contribute to the furtner under-

standing of this difficult problerm.

+ . « .
T. L. Smith and A, M. Magnusson; Journal of Tolymer Scicrce, 42, 391,

(1960).
-+

¥ T. J. Dudek, and F. Bueche; Rubber Cherristry and Techinology, 37, &94,
(1964).



11 STRESS ANALYSIS OF CRACK GEOMETRIES UNDER LARGE
DEFORNATIONS

As mentioned under the previous section, failure in polymeric
materials is usually associated with large deformations. In the event that
one wishes to study failure as a process of crack propagation, one must
know the deformations and stresses at the tip of the crack. The development
of this knowledge hae been divided into three parts which are discussed
subsequently.

a) Experimrental Evaluations: Earlier experimental results had

indicated that linear elastic theory could be used with some modification

to approximately predict stresses and deformations under surprisingly
large deformations. There remained the question, however, whether these
measurements included tearing at the crack tip or not. Experin euais wiih
sheets of natural rubber have now been conducted to show that tearing does
not occur until rather large strains are applied (for definition of terms for
the tests see figure 5). The first tearing was observed at a gross strain of
approximately 40 per cent. The question that arises now is, of course,
why the material should withstand such high strains before rupturing.

One obvious answer is that natural rubber crystalizes under strain and can
thus withstand larger strains than other inaterials. There i‘s one other
explanation, which heretofore has been recognized a2s a possibility but
which has eluded quantative evaluation: the strain alleviating effect of
large deformations. This is discussed in the next part.

b) Incremental solution for a linearly elastic material. Solutions

of problems in classical elasticity are essentially valid if the strains are
infinitesin-al everywhere in the stressed body. The solution, say the
stress 7, depends on the applied load P in a lincar fashion

7~P
If there are stress risers in the body, then linear solutions are valid as
long as the material behaves in a linear fashion and the boundaries do not
move significantly so as to allow satisfaction of the boundary conditions in a

simple form. At any rate we can write a differential solution which is always

valid



de= K(P) dP (6)

where K is a function of the load P through the deformed state of the body.
If this equation is integrated, one obtains a solution which allows for large
deformations provided the material behaves always linearly elastically.
The latter condition is well approximn:ated by rubbers under moderate strains.
In this manner the problem of an infinite sheet containing an elliptic
perforation was solved. The strain and straiu concentration {actor at the
root of the ellipse are shown in figures 9 and 10, respectively, as a function
of the applied gross strain. Whereas classical, linear elasticity predicts
constant strain concentration factors (corresponding to those at zero
strain) the present treatment leads to marked reduction with gross strain
and thus to markedly lower strain values at the ellipse root than linear
theory would predict. Because the material is assumed to be hookean, the
reduction in strain is due entirely to kinematic effects under large
deformations. The stress concentration factor is equal to the strain
concentration factor.

c) Incremental computer solution for a non-linearly elastic

material. In order to incorporate the non-linear n.aterial properties

into the analysis it was necessary to write a computer program. Following
essentially the incremental procedure in the previous discussion the load

is applied in small but finite increimments. Preliminary results are shown in
figure 1l. As for the incremental linear analysis, the stress and strain
concentration factors decrease in the same characteristic fashion with the
applied strain. But due to the non-linear raterial properties (neo-hookean
material) the concentration factors decrease fast with applied strain and

they are no longer equal. Work along these lines is continuing.



IIT COMFARISCN OF THEORY AND EXPERIMENT FOR FAILURE UNDER
UNIAXIAL CYCLIC STRAIN

In the last semi-annual report:+ calculations were presented which
indicated the effect of maximum strain and {requency in a cyclic uniaxial
strain experiment on the failure time. Using these calculations as a guide,
experimental work is underway to examine this validity.

T wo points have become clear fromr the experimental work. The
qualitative behavior is as predicted by the calculations, but results are
too sparse to derive more definite conclusions at this time. The
limmitation has been in the equipment which allowed use of only a single
frequency and strain amplitude. The second point of interest is, that
depending on the frequenay and/nr temperature the ring specimens follow
a physically reasonable but seldomly considered or reported loading cycle.
Upon unloading, the viscoelastic ring cannot contract as fast as the strain-
producing ram, thus leaving the material free to contract under zero load
for part of the cycle. The deformation history is thus prescribed by a
given strain history during part of the cycle, the remainder of the cycle

having zero stress specified; the history can be written as

€(t) = sin wt 0 <t < t¥
(7)
a(t) = 0 t*ﬁtfzul

Failure Criteria for Viscoelastic Materials, California Institute of
Technology, Pasadena, California, GALCIT SM 66-10, June 1966.
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which is given graphically in figure 12 below.
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Figure 12. Load History On Ring Spccimen Under Cyclic Extension

At Relatively High Frequencies

The deformation and stress during each cycle are dependent on these

split conditions. The determnination of the stress and strain history

requires the solution of a Fredholm integral equation of the first kind

t* 9

ek K*(Tot*)

B(t¥) + a;(*(t*'t*) g(r)dr + g'(t*) = 0 (8)
, 0
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where t* is also a function of the frequency. This type of loading history
has not been considered heretofore. At present we restrict ourselves to
load histories in which the strain is always known {and the stress therefore
also; t* = —'371) which restricts experimental work to relatively low
(tennperatur; reduced) freguencies.

Figure 13 shows the typical plot of the failure time in a cyclic strain
experiment as a function of temperature. At the test frequency (1.2 sec/cycle)
the strain history was sinusoidal above 12°C and of the discontinuous type
(illustrated in figure 12) below that temperature. Accordingly one should
differentiate between the time to failure fro:: the beginning of the test
(accured failure time) and the total time the specimen was under stress.
Figure 14 shows the failure time as a function of the maximum observed
stress. It is clear from both figures 13 and 14 that the time to failure
passes through a minimum as a function of applied load, temperature or

frequency.
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iv. CRACK PROPAGATION IN A STRII-

In order to better understand the basic processes involved in
fracture, the growth of a crack in a strip has been studied under
various load histories. The work may be divided into two areas, one
being theoretical, the other experimental.

a) Theoretical Work. For a crack propagating in a viscoelastic

mediumi, the strain energy released by the system is transfor.ned not
only to surface free energy, but also into dissipation and kinetic energy.
Thus, the Griffith energy equation for the growth of a crack in an elastic

material is
L [W-F-2D-K] = 0 (9)
ot -

where W is the total inpu work, F is the Helmholtz free energy of
the system, D is the total dissipation due to heat loss and K, the
kinetic energy.

If we consider a crack propagating with a constant velocity, the
rate of change of kinetic energy is zero. In the energy balance cquation
the evaluation of W and F is the same as for the clastic material. To
calculate the rate of change of dissipation we assume that the stress field
for a slowly moving crack is the same as that of a stationary crack,
furthermore, assume that the dissipation is only effected by the stress
concentration field. Accordingly, the expression of the rate of dissipation
for a viscoelastic material can be derived {rom the fundamental definition.
The analytical expression of the rate of dissipation seems very difficult to
obtain due to the complexity of the integration process involved. However,
it can be found numerically for discrete points in the domain of interest.
The rate-of-dissipation density at the crack tip was found unbounded while
the total rate of dissipation for a finite domain around the crack tip has
been shown to be bounded. This fact will enable us to extend the Griffith
type energy balance to the growth of craks in viscoelastic materials. A

computer program is under way to accomplish the numerical integration.
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In the calculation process special care must be taken due to the presence
of improper integrals which need to be evaluated analytically before
numerical integration can be accomplished.

b) Experimental ‘York, Crack propagation in monotonic strain

histories has been studied previously; to round out the experimental
evaluation, tests are in progress {or cyclic strains.

The major difficulty has been the recording of the crack
advanceirent which must be accomplished with kinematographic means.
In order to cover a sufficient range of crack velocities, it was necessary
to develop lighting and film developing techniques for the particular
experimental set up available in our laboratories. The methods developed
give now satisfactory results. Since the filn records give the crack
position as a function of tirr.e, the velocity must be obtained by numerical
differentiation. A typical plot of the crack velocity compared to the applied
strain is given in figure 1 5. The inmportant observations are: The shape of
the velocity-time trace is different from the shape of the applied strain-time
trace. This fact is sirmply the result of the non-linear relation between the
applied strain and the crack velocity. Although this is clear on physical
grounds, this fact has not always been appreciated in proposed failure
calculations. A fact appreciated even less is that the velocity cycle lags
behind the strain cycle. This is clearly the effect of viscoelastic material
response. It is interesting to note, however, that the lag appears larger than
one would expect on the basis of simple viscoelastic behavior at these
temperatures (20°C) and cycle rates (6 cycles per second). In order to
quantitatively evaluate this behavior for a more definite physical inter-
pretation, it is necessary to obtain more test data than have been obtained
to date. Data reduction by current hand calculation methods is slow and
inaccurate. iherefore, existing equipment is currently being modified to
reduce the film records semi-auton-atically onto IBM cards which can then
be used in conjunction with a Fourier analysis to obtain velocity plots (and
then phase lag between maximum strain and maximum velocity) simply
and in a straightforward way. Card punch equipment and digitizer circuits
are already available and {ilim reading equipment only needs modification
to allow for sinmultaneous reading of the time scale and the crack position

through a switching unit. The latter is under counstruction.
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CONCLUSICN

In summary we can state that apparently insurnountable problems
exist only with respect to the concrete behavior of Solithane 113% under
large strains. Further work will ernphasize consolidation and amplification

of the results reported here rather than the opening of new probler: areas.

%

. Becagse this material is being made controllably in our laboratory and
ecause it can fracture under small strains where linear viscoelastic

behav1_or may suffice for characterization, we plan to continue usi hi

material rather than starting with another one. ne e
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